direct product, p-group, metabelian, nilpotent (class 2), monomial
Aliases: C2×C22.33C24, C23.19C24, C22.40C25, C24.482C23, C42.542C23, C22.752- 1+4, C22.1032+ 1+4, (C4×D4)⋊94C22, (C2×C4).43C24, C4⋊C4.461C23, C22⋊C4.7C23, C22⋊Q8⋊76C22, (C2×D4).448C23, (C2×Q8).275C23, C42.C2⋊39C22, C42⋊2C2⋊23C22, C2.8(C2×2+ 1+4), C2.6(C2×2- 1+4), C23.260(C4○D4), C4⋊D4.216C22, (C2×C42).917C22, (C23×C4).584C22, (C22×C4).1180C23, (C22×D4).586C22, C22.D4⋊34C22, (C22×Q8).351C22, (C2×C4×D4)⋊73C2, (C22×C4⋊C4)⋊42C2, (C2×C22⋊Q8)⋊64C2, C22.9(C2×C4○D4), (C2×C4⋊C4)⋊130C22, (C2×C4⋊D4).61C2, (C2×C42.C2)⋊38C2, C2.17(C22×C4○D4), (C2×C42⋊2C2)⋊32C2, (C2×C22.D4)⋊51C2, (C2×C22⋊C4).530C22, SmallGroup(128,2183)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C22.33C24
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=g2=1, e2=c, f2=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, ede-1=gdg=bd=db, fef-1=be=eb, bf=fb, bg=gb, fdf-1=cd=dc, ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >
Subgroups: 844 in 572 conjugacy classes, 396 normal (20 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C24, C24, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4×D4, C4⋊D4, C22⋊Q8, C22.D4, C42.C2, C42⋊2C2, C23×C4, C23×C4, C22×D4, C22×D4, C22×Q8, C22×C4⋊C4, C2×C4×D4, C2×C4⋊D4, C2×C22⋊Q8, C2×C22⋊Q8, C2×C22.D4, C2×C42.C2, C2×C42⋊2C2, C22.33C24, C2×C22.33C24
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, 2- 1+4, C25, C22.33C24, C22×C4○D4, C2×2+ 1+4, C2×2- 1+4, C2×C22.33C24
(1 49)(2 50)(3 51)(4 52)(5 37)(6 38)(7 39)(8 40)(9 29)(10 30)(11 31)(12 32)(13 17)(14 18)(15 19)(16 20)(21 25)(22 26)(23 27)(24 28)(33 63)(34 64)(35 61)(36 62)(41 53)(42 54)(43 55)(44 56)(45 57)(46 58)(47 59)(48 60)
(1 19)(2 20)(3 17)(4 18)(5 61)(6 62)(7 63)(8 64)(9 55)(10 56)(11 53)(12 54)(13 51)(14 52)(15 49)(16 50)(21 59)(22 60)(23 57)(24 58)(25 47)(26 48)(27 45)(28 46)(29 43)(30 44)(31 41)(32 42)(33 39)(34 40)(35 37)(36 38)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 34)(2 37)(3 36)(4 39)(5 50)(6 13)(7 52)(8 15)(9 58)(10 21)(11 60)(12 23)(14 63)(16 61)(17 38)(18 33)(19 40)(20 35)(22 53)(24 55)(25 30)(26 41)(27 32)(28 43)(29 46)(31 48)(42 45)(44 47)(49 64)(51 62)(54 57)(56 59)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 59 19 21)(2 22 20 60)(3 57 17 23)(4 24 18 58)(5 43 61 29)(6 30 62 44)(7 41 63 31)(8 32 64 42)(9 37 55 35)(10 36 56 38)(11 39 53 33)(12 34 54 40)(13 27 51 45)(14 46 52 28)(15 25 49 47)(16 48 50 26)
(1 9)(2 10)(3 11)(4 12)(5 47)(6 48)(7 45)(8 46)(13 41)(14 42)(15 43)(16 44)(17 53)(18 54)(19 55)(20 56)(21 35)(22 36)(23 33)(24 34)(25 61)(26 62)(27 63)(28 64)(29 49)(30 50)(31 51)(32 52)(37 59)(38 60)(39 57)(40 58)
G:=sub<Sym(64)| (1,49)(2,50)(3,51)(4,52)(5,37)(6,38)(7,39)(8,40)(9,29)(10,30)(11,31)(12,32)(13,17)(14,18)(15,19)(16,20)(21,25)(22,26)(23,27)(24,28)(33,63)(34,64)(35,61)(36,62)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,19)(2,20)(3,17)(4,18)(5,61)(6,62)(7,63)(8,64)(9,55)(10,56)(11,53)(12,54)(13,51)(14,52)(15,49)(16,50)(21,59)(22,60)(23,57)(24,58)(25,47)(26,48)(27,45)(28,46)(29,43)(30,44)(31,41)(32,42)(33,39)(34,40)(35,37)(36,38), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,34)(2,37)(3,36)(4,39)(5,50)(6,13)(7,52)(8,15)(9,58)(10,21)(11,60)(12,23)(14,63)(16,61)(17,38)(18,33)(19,40)(20,35)(22,53)(24,55)(25,30)(26,41)(27,32)(28,43)(29,46)(31,48)(42,45)(44,47)(49,64)(51,62)(54,57)(56,59), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,59,19,21)(2,22,20,60)(3,57,17,23)(4,24,18,58)(5,43,61,29)(6,30,62,44)(7,41,63,31)(8,32,64,42)(9,37,55,35)(10,36,56,38)(11,39,53,33)(12,34,54,40)(13,27,51,45)(14,46,52,28)(15,25,49,47)(16,48,50,26), (1,9)(2,10)(3,11)(4,12)(5,47)(6,48)(7,45)(8,46)(13,41)(14,42)(15,43)(16,44)(17,53)(18,54)(19,55)(20,56)(21,35)(22,36)(23,33)(24,34)(25,61)(26,62)(27,63)(28,64)(29,49)(30,50)(31,51)(32,52)(37,59)(38,60)(39,57)(40,58)>;
G:=Group( (1,49)(2,50)(3,51)(4,52)(5,37)(6,38)(7,39)(8,40)(9,29)(10,30)(11,31)(12,32)(13,17)(14,18)(15,19)(16,20)(21,25)(22,26)(23,27)(24,28)(33,63)(34,64)(35,61)(36,62)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,19)(2,20)(3,17)(4,18)(5,61)(6,62)(7,63)(8,64)(9,55)(10,56)(11,53)(12,54)(13,51)(14,52)(15,49)(16,50)(21,59)(22,60)(23,57)(24,58)(25,47)(26,48)(27,45)(28,46)(29,43)(30,44)(31,41)(32,42)(33,39)(34,40)(35,37)(36,38), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,34)(2,37)(3,36)(4,39)(5,50)(6,13)(7,52)(8,15)(9,58)(10,21)(11,60)(12,23)(14,63)(16,61)(17,38)(18,33)(19,40)(20,35)(22,53)(24,55)(25,30)(26,41)(27,32)(28,43)(29,46)(31,48)(42,45)(44,47)(49,64)(51,62)(54,57)(56,59), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,59,19,21)(2,22,20,60)(3,57,17,23)(4,24,18,58)(5,43,61,29)(6,30,62,44)(7,41,63,31)(8,32,64,42)(9,37,55,35)(10,36,56,38)(11,39,53,33)(12,34,54,40)(13,27,51,45)(14,46,52,28)(15,25,49,47)(16,48,50,26), (1,9)(2,10)(3,11)(4,12)(5,47)(6,48)(7,45)(8,46)(13,41)(14,42)(15,43)(16,44)(17,53)(18,54)(19,55)(20,56)(21,35)(22,36)(23,33)(24,34)(25,61)(26,62)(27,63)(28,64)(29,49)(30,50)(31,51)(32,52)(37,59)(38,60)(39,57)(40,58) );
G=PermutationGroup([[(1,49),(2,50),(3,51),(4,52),(5,37),(6,38),(7,39),(8,40),(9,29),(10,30),(11,31),(12,32),(13,17),(14,18),(15,19),(16,20),(21,25),(22,26),(23,27),(24,28),(33,63),(34,64),(35,61),(36,62),(41,53),(42,54),(43,55),(44,56),(45,57),(46,58),(47,59),(48,60)], [(1,19),(2,20),(3,17),(4,18),(5,61),(6,62),(7,63),(8,64),(9,55),(10,56),(11,53),(12,54),(13,51),(14,52),(15,49),(16,50),(21,59),(22,60),(23,57),(24,58),(25,47),(26,48),(27,45),(28,46),(29,43),(30,44),(31,41),(32,42),(33,39),(34,40),(35,37),(36,38)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,34),(2,37),(3,36),(4,39),(5,50),(6,13),(7,52),(8,15),(9,58),(10,21),(11,60),(12,23),(14,63),(16,61),(17,38),(18,33),(19,40),(20,35),(22,53),(24,55),(25,30),(26,41),(27,32),(28,43),(29,46),(31,48),(42,45),(44,47),(49,64),(51,62),(54,57),(56,59)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,59,19,21),(2,22,20,60),(3,57,17,23),(4,24,18,58),(5,43,61,29),(6,30,62,44),(7,41,63,31),(8,32,64,42),(9,37,55,35),(10,36,56,38),(11,39,53,33),(12,34,54,40),(13,27,51,45),(14,46,52,28),(15,25,49,47),(16,48,50,26)], [(1,9),(2,10),(3,11),(4,12),(5,47),(6,48),(7,45),(8,46),(13,41),(14,42),(15,43),(16,44),(17,53),(18,54),(19,55),(20,56),(21,35),(22,36),(23,33),(24,34),(25,61),(26,62),(27,63),(28,64),(29,49),(30,50),(31,51),(32,52),(37,59),(38,60),(39,57),(40,58)]])
44 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 4A | ··· | 4H | 4I | ··· | 4AB |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | 2+ 1+4 | 2- 1+4 |
kernel | C2×C22.33C24 | C22×C4⋊C4 | C2×C4×D4 | C2×C4⋊D4 | C2×C22⋊Q8 | C2×C22.D4 | C2×C42.C2 | C2×C42⋊2C2 | C22.33C24 | C23 | C22 | C22 |
# reps | 1 | 1 | 2 | 1 | 3 | 4 | 2 | 2 | 16 | 8 | 2 | 2 |
Matrix representation of C2×C22.33C24 ►in GL8(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(8,GF(5))| [4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1],[3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;
C2×C22.33C24 in GAP, Magma, Sage, TeX
C_2\times C_2^2._{33}C_2^4
% in TeX
G:=Group("C2xC2^2.33C2^4");
// GroupNames label
G:=SmallGroup(128,2183);
// by ID
G=gap.SmallGroup(128,2183);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,456,1430,387,184,1123]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=g^2=1,e^2=c,f^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,e*d*e^-1=g*d*g=b*d=d*b,f*e*f^-1=b*e=e*b,b*f=f*b,b*g=g*b,f*d*f^-1=c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations